

### Features

- Single-Supply Operation from +2.1V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 6MHz (Typ.)
- Low Input Bias Current: 1pA (Typ.)
- Low Offset Voltage: 3.5mV (Max.)
- Quiescent Current: 470µA per Amplifier (Typ.)
- Operating Temperature: -40°C ~ +125°C

### **General Description**

• Small Package:

ASOP8631 Available in SOT23-5, SOP-8 and SC70-5 Packages ASOP8632 Available in SOP-8 and MSOP-8 Packages ASOP8634 Available in SOP-14 and TSSOP-14 Packages

The ASOP863X have a high gain-bandwidth product of 6MHz, a slew rate of  $4.2V/\mu s$ , and a quiescent current of  $470 \mu A$  peramplifier at 5V. The ASOP863X are designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for ASOP863X. They are specified over the extended industrial temperature range ( $-40^{\circ}C$  to  $+125^{\circ}C$ ). The operating range is from 2.1V to 5.5V. The ASOP8631 single is available in Green SC70-5, SOT23-5 and SOP-8 packages. The ASOP8632 dual is available in Green SOP-8 and MSOP-8 packages. The ASOP8634 Quad is available in Green SOP-14 and TSSOP-14 packages.

# Applications

- Sensors
- Active Filters
- Cellular and Cordless Phones
- Laptops and PDAs

### **Pin Configuration**

- Audio
- Handheld Test Equipment
- Battery-Powered Instrumentation
- A/D Converters

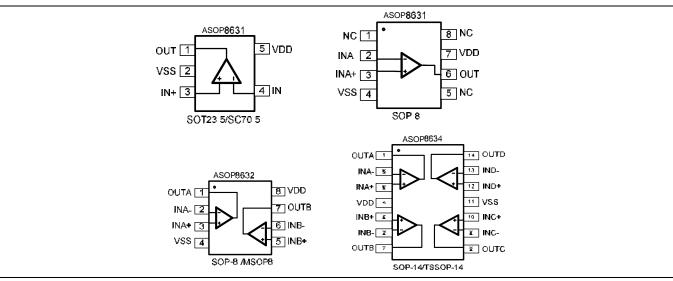



Figure 1. Pin Assignment Diagram



### **Absolute Maximum Ratings**

| Condition                                     | Min      | Max                   |  |  |
|-----------------------------------------------|----------|-----------------------|--|--|
| Power Supply Voltage (V <sub>DD</sub> to Vss) | -0.5V    | +7.5V                 |  |  |
| Analog Input Voltage (IN+ or IN-)             | Vss-0.5V | V <sub>DD</sub> +0.5V |  |  |
| PDB Input Voltage                             | Vss-0.5V | +7V                   |  |  |
| Operating Temperature Range                   | -40°C    | +125°C                |  |  |
| Junction Temperature                          | +16      | 0°C                   |  |  |
| Storage Temperature Range                     | -55°C    | +150°C                |  |  |
| Lead Temperature (soldering, 10sec)           | +260°C   |                       |  |  |
| Package Thermal Resistance (TA=+25°C)         |          |                       |  |  |
| SOP-8, θ <sub>JA</sub>                        | 125°     | C/W                   |  |  |
| MSOP-8, θ <sub>JA</sub>                       | 216°     | C/W                   |  |  |
| SOT23-5, θ <sub>JA</sub>                      | 190°     | C/W                   |  |  |
| SOT23-6, θ <sub>JA</sub>                      | 190°     | 190°C/W               |  |  |
| SC70-5, θ <sub>JA</sub>                       | 333°C/W  |                       |  |  |
| ESD Susceptibility                            |          |                       |  |  |
| НВМ                                           | 8KV      |                       |  |  |
| MM                                            | 400V     |                       |  |  |

**Note:** Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.



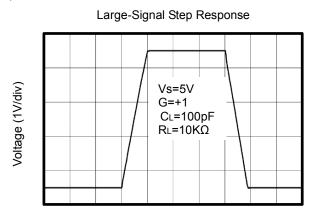
# **Electrical Characteristics**

(At Vs=5V, T\_A = +25  $^\circ \! \rm C$  , V\_{CM} = V\_S/2, R\_L = 600  $^\Omega$  , unless otherwise noted.)

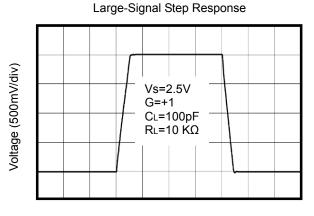
|                                                           |                                                  |         |                          | ļ     | ASOP8631/2 | /4       |               |       |
|-----------------------------------------------------------|--------------------------------------------------|---------|--------------------------|-------|------------|----------|---------------|-------|
|                                                           |                                                  | ТҮР     | MIN/MAX OVER TEMPERATURE |       |            |          |               |       |
| PARAMETER                                                 | CONDITIONS                                       | 10      |                          | 0℃ to | -40°C      | -40 ℃ to |               | MIN / |
|                                                           |                                                  | +25℃    | +25℃                     | 70°C  | to 85℃     | 125°C    | UNITS         | МАХ   |
| INPUT CHARACTERISTICS                                     | ·                                                | •       |                          |       |            |          |               |       |
| Input Offset Voltage (V <sub>OS</sub> )                   |                                                  | 0.8     | 3.5                      | 3.9   | 4.3        | 4.6      | mV            | MAX   |
| Input Bias Current (I <sub>B</sub> )                      |                                                  | 1       |                          |       |            |          | pА            | TYP   |
| Input Offset Current (I <sub>OS</sub> )                   |                                                  | 1       |                          |       |            |          | pА            | TYP   |
| Input Common Mode Voltage Range (V <sub>CM</sub> )        | V <sub>S</sub> = 5.5V                            | -0.1 to |                          |       |            |          | V             | TYP   |
|                                                           |                                                  | +5.6    |                          |       |            |          |               |       |
| Common Mode Rejection Ratio (CMRR)                        | $V_{\rm S}$ = 5.5V, $V_{\rm CM}$ = -0.1V to 4V   | 90      | 73                       | 70    | 70         | 65       | dB            | MIN   |
|                                                           | $V_{\rm S}$ = 5.5V, $V_{\rm CM}$ = -0.1V to 5.6V | 83      |                          |       |            |          | dB            | MIN   |
| Open-Loop Voltage Gain (A <sub>OL</sub> )                 | $R_L = 600\Omega, V_O = 0.15V \text{ to } 4.85V$ | 97      | 90                       | 87    | 86         | 79       | dB            | MIN   |
|                                                           | $R_L$ = 10k $\Omega$ , $V_O$ = 0.05V to 4.95V    | 108     |                          |       |            |          | dB            | MIN   |
| Input Offset Voltage Drift ( $\Delta V_{OS} / \Delta_T$ ) |                                                  | 2.4     |                          |       |            |          | μ <b>V</b> /℃ | TYP   |
| OUTPUT CHARACTERISTICS                                    | ·                                                | •       |                          |       |            |          |               |       |
| Output Voltage Swing from Rail                            | R <sub>L</sub> = 600Ω                            | 0.1     |                          |       |            |          | V             | TYP   |
|                                                           | $R_L = 10k\Omega$                                | 0.015   |                          |       |            |          | V             | TYP   |
| Output Current (I <sub>OUT</sub> )                        |                                                  | 53      | 49                       | 45    | 40         | 35       | mA            | MIN   |
| Closed-Loop Output Impedance                              | f = 200kHz, G = 1                                | 3       |                          |       |            |          | Ω             | TYP   |
| POWER-DOWN DISABLE                                        | ·                                                | •       |                          | •     |            | •        | •             |       |
| Turn-On Time                                              |                                                  | 4       |                          |       |            |          | μs            | TYP   |
| Turn-Off Time                                             |                                                  | 1.2     |                          |       |            |          | μs            | TYP   |
| POWER SUPPLY                                              | ·                                                | •       |                          | •     |            | •        | •             |       |
| Operating Voltage Range                                   |                                                  |         | 2.1                      | 2.1   | 2.1        | 2.1      | V             | MIN   |
|                                                           |                                                  |         | 5.5                      | 5.5   | 5.5        | 5.5      | V             | MAX   |
| Power Supply Rejection Ratio (PSRR)                       | V <sub>S</sub> = +2.5V to +5.5V                  |         |                          |       |            |          |               |       |
|                                                           | $V_{CM} = (-V_S) + 0.5V$                         | 91      | 74                       | 72    | 72         | 68       | dB            | MIN   |
| Quiescent Current/Amplifier ( $I_Q$ )                     | I <sub>OUT</sub> = 0                             | 470     | 650                      | 727   | 750        | 815      | μA            | MAX   |
|                                                           |                                                  |         |                          |       |            |          |               |       |



## **Electrical Characteristics**

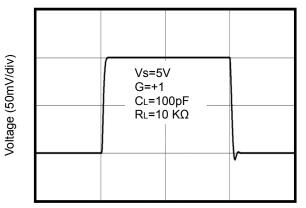

(At Vs=5V, T\_A = +25  $^\circ C$  , V\_{CM} = V\_S/2, R\_L = 600  $^\circ \Omega$  , unless otherwise noted.)

|                                         |                                           |             | ASOP8631/2/4 P MIN/MAX OVER TEMPERATURE |        |         |        |                |       |  |
|-----------------------------------------|-------------------------------------------|-------------|-----------------------------------------|--------|---------|--------|----------------|-------|--|
| PARAMETER                               | CONDITIONS                                | TYP         |                                         |        |         |        |                |       |  |
| PARAMETER                               | CONDITIONS                                | 1.05%       |                                         | 0°C to | -40℃ to | -40℃to |                | MIN / |  |
|                                         |                                           | <b>+25℃</b> | <b>+25℃</b>                             | 70°C   | 85°C    | 125℃   | UNITS          | MAX   |  |
| DYNAMIC PERFORMANCE                     |                                           |             |                                         |        |         |        |                | •     |  |
| Gain-Bandwidth Product (GBP)            | $R_L = 10k\Omega, C_L = 100pF$            | 6           |                                         |        |         |        | MHz            | TYP   |  |
| Phase Margin ( $\phi_0$ )               | $R_L$ = 10k $\Omega$ , $C_L$ = 100pF      | 53          |                                         |        |         |        | Degrees        | TYP   |  |
| Full Power Bandwidth (BWP)              | ${<}1\%$ distortion, RL = 600 $\Omega$    | 250         |                                         |        |         |        | kHz            | TYP   |  |
| Slew Rate (SR)                          | G = +1, 2V Step, $R_L$ = 10k $\Omega$     | 4.2         |                                         |        |         |        | V/µs           | TYP   |  |
| Settling Time to 0.1% $(t_s)$           | G = +1, 2V Step, $R_L$ = 600 $\Omega$     | 0.4         |                                         |        |         |        | μs             | TYP   |  |
| Overload Recovery Time                  | $V_{IN} \cdot Gain = VS, R_L = 600\Omega$ | 2.5         |                                         |        |         |        | μs             | TYP   |  |
| NOISE PERFORMANCE                       |                                           |             |                                         |        |         |        |                |       |  |
| Voltage Noise Density (e <sub>n</sub> ) | f = 1kHz                                  | 13          |                                         |        |         |        | $nV/\sqrt{Hz}$ | TYP   |  |
|                                         | f = 10kHz                                 | 9.5         |                                         |        |         |        | $nV/\sqrt{Hz}$ | TYP   |  |

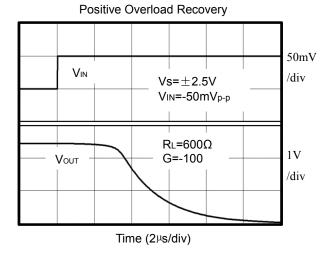



### **Typical Performance characteristics**

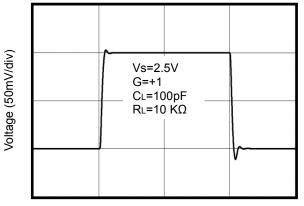
(At Vs=5V, T<sub>A</sub> = +25 $^{\circ}$ C, V<sub>CM</sub> = Vs/2, R<sub>L</sub> = 600 $\Omega$ , unless otherwise noted.)



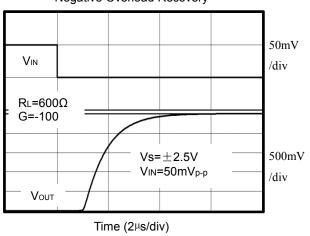

Time (1µs/div)

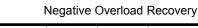



Time (1µs/div)


Small-Signal Step Response




Time (1µs/div)




Small-Signal Step Response



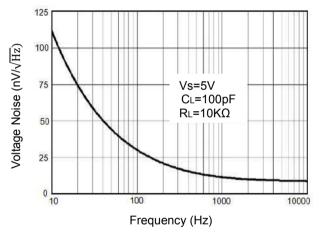
Time (1µs/div)



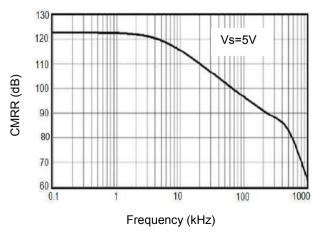


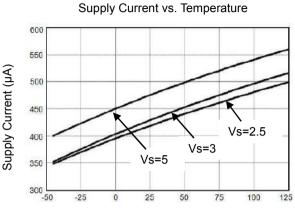


### **Typical Performance characteristics**

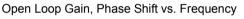

Output Voltage Swing vs.Output Current

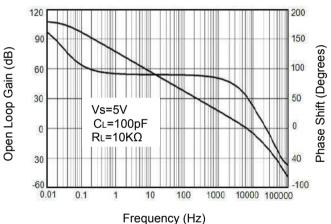
(At Vs=5V, T<sub>A</sub> = +25  $^{\circ}$ C, V<sub>CM</sub> = Vs/2, R<sub>L</sub> = 600 $\Omega$ , unless otherwise noted.)

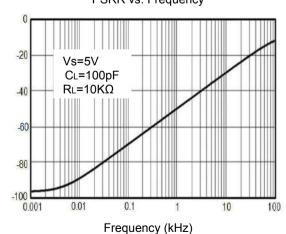

5 Sourcing Current Output Voltage (V) 3 **-50°**℃ **135**℃ **25℃** Vs=5V 2 0 Sinking Current -1 20 40 60 80 0


Output Current(mA)
















#### PSRR vs. Frequency

PSRR (dB)



### **Application Note**

#### Size

ASOP863X series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the ASOP863X series packages save space on printed circuit boards and enable the design of smaller electronic products.

#### **Power Supply Bypassing and Board Layout**

ASOP863X series operates from a single 2.1V to 5.5V supply or dual  $\pm 1.05V$  to  $\pm 2.75V$  supplies. For best performance, a 0.1µF ceramic capacitor should be placed close to the V<sub>DD</sub> pin in single supply operation. For dual supply operation, both V<sub>DD</sub> and V<sub>SS</sub> supplies should be bypassed to ground with separate 0.1µF ceramic capacitors.

#### **Low Supply Current**

The low supply current (typical 470uA per channel) of ASOP863X series will help to maximize battery life. They are ideal for battery powered systems

#### **Operating Voltage**

ASOP863X series operate under wide input supply voltage (2.1V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure

operation throughout the single Li-Ion battery lifetime

#### **Rail-to-Rail Input**

The input common-mode range of ASOP863X series extends 100mV beyond the supply rails ( $V_{SS}$ -0.1V to  $V_{DD}$ +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

#### **Rail-to-Rail Output**

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of ASOP863X series can typically swing to less than 2mV from supply rail in light resistive loads (>100k $\Omega$ ), and 60mV of supply rail in moderate resistive loads (10k $\Omega$ ).

#### **Capacitive Load Tolerance**

The ASOP863X family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

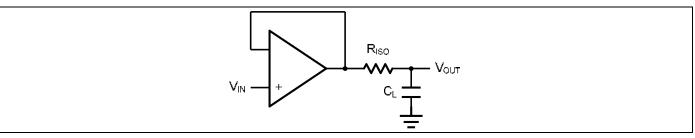



Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the  $R_{ISO}$  resistor value, the more stable  $V_{OUT}$  will be. However, if there is a resistive load  $R_L$  in parallel with the capacitive load, a voltage divider (proportional to  $R_{ISO}/R_L$ ) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R<sub>F</sub> provides the DC accuracy by feed-forward the V<sub>IN</sub> to R<sub>L</sub>. C<sub>F</sub>



and  $R_{ISO}$  serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of  $C_{F}$ . This in turn will slow down the pulse response.

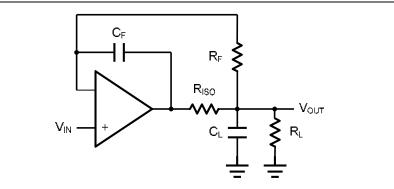



Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy



# **Typical Application Circuits**

#### **Differential amplifier**

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using ASOP863X.

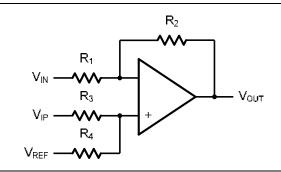



Figure 4. Differential Amplifier

$$V_{\text{OUT}} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e.  $R_1=R_3$  and  $R_2=R_4$ ), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

#### **Low Pass Active Filter**

The low pass active filter is shown in Figure 5. The DC gain is defined by  $-R_2/R_1$ . The filter has a -20dB/decade roll-off after its corner frequency  $f_c=1/(2\pi R_3C_1)$ .

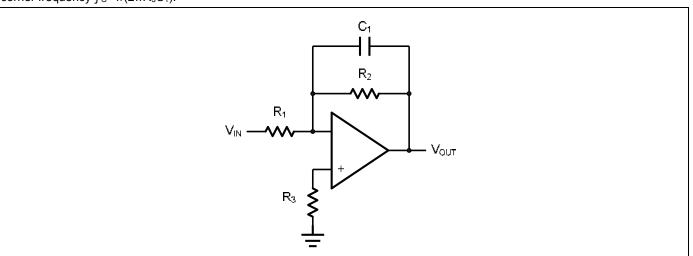



Figure 5. Low Pass Active Filter



#### **Instrumentation Amplifier**

The triple ASOP863X can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of  $R_2/R_1$ . The two differential voltage followers assure the high input impedance of the amplifier.

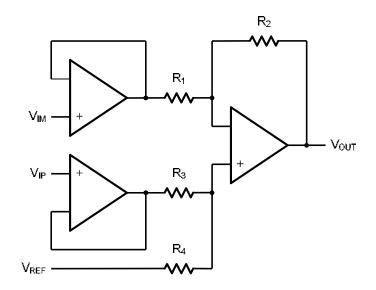
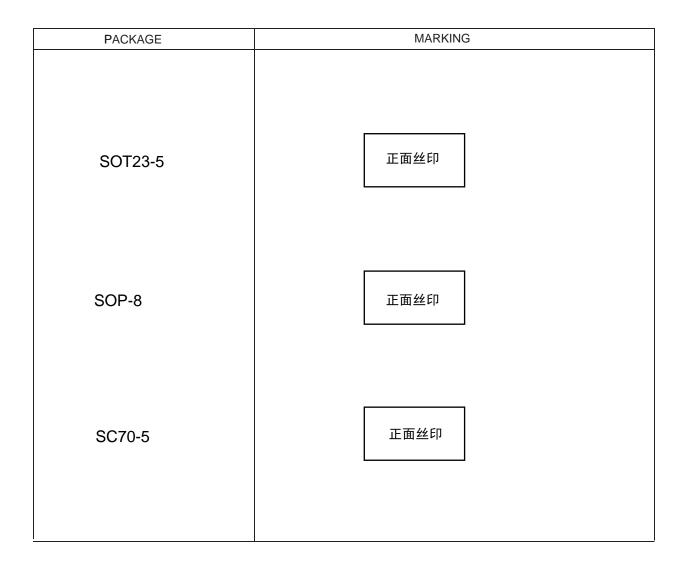
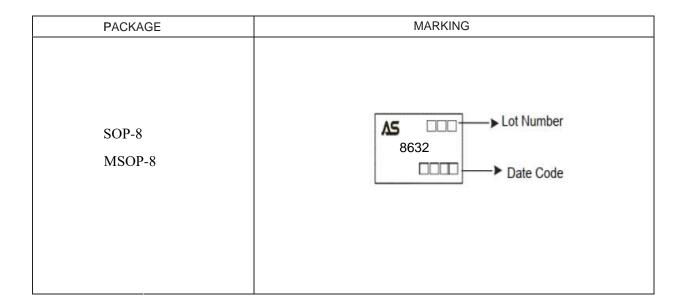




Figure 6. Instrument Amplifier



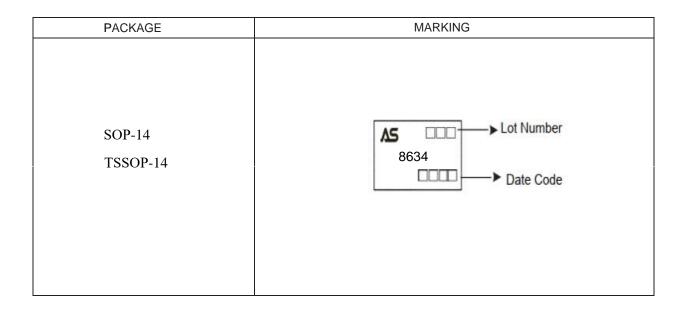
# **Ordering and Marking Information**


| Device       | Channel | Marking | Package | Packaging | Quantity  |
|--------------|---------|---------|---------|-----------|-----------|
| ASOP8631ZD-R | Singel  | 正面丝印    | SOT23-5 | Tape&Reel | 3000/Reel |
| ASOP8631S-R  | Singel  | 正面丝印    | SOP-8   | Tape&Reel | 4000/Reel |
| ASOP8631CD-R | Singel  | 正面丝印    | SC70-5  | Tape&Reel | 3000/Reel |





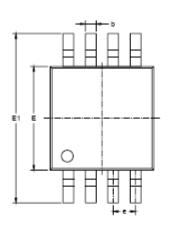
# **Ordering and Marking Information**


| Device       | Channel | Marking | Package | Packaging | Quantity  |
|--------------|---------|---------|---------|-----------|-----------|
| ASOP8632S-R  | Dual    | 8632    | SOP-8   | Tape&Reel | 4000/Reel |
| ASOP8632MS-R | Dual    | 8632    | MSOP-8  | Tape&Reel | 3000/Reel |

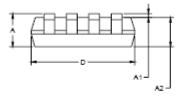




# **Ordering and Marking Information**


| Device       | Channel | Marking | Package  | Packaging | Quantity  |
|--------------|---------|---------|----------|-----------|-----------|
| ASOP8634SA-R | Quad    | 8634    | SOP-14   | Tape&Reel | 2500/Reel |
| ASOP8634ST-R | Quad    | 8634    | TSSOP-14 | Tape&Reel | 3000/Reel |

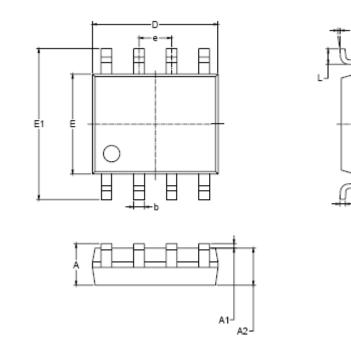





# **Package Information**

MSOP-8

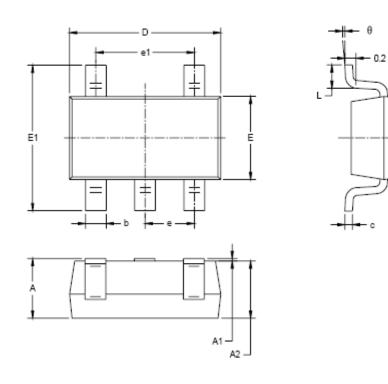







| Symbol | Dimer<br>In Milli | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------------------|------------------|-------------------------|-------|--|
|        | MIN               | MAX              | MIN                     | MAX   |  |
| A      | 0.820             | 1.100            | 0.032                   | 0.043 |  |
| A1     | 0.020             | 0.150            | 0.001                   | 0.006 |  |
| A2     | 0.750             | 0.950            | 0.030                   | 0.037 |  |
| b      | 0.250             | 0.380            | 0.010                   | 0.015 |  |
| с      | 0.090             | 0.230            | 0.004                   | 0.009 |  |
| D      | 2.900             | 3.100            | 0.114                   | 0.122 |  |
| E      | 2.900             | 3.100            | 0.114                   | 0.122 |  |
| E1     | 4.750             | 5.050            | 0.187                   | 0.199 |  |
| e      | 0.650 BSC         |                  | 0.026                   | BSC   |  |
| L      | 0.400             | 0.800            | 0.016                   | 0.031 |  |
| θ      | 0°                | 6°               | 0°                      | 6°    |  |

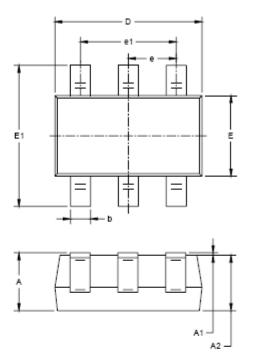


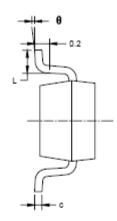

#### SOP-8



| Symbol |       | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------|------------------|-------------------------|-------|--|
| ,      | MIN   | MAX              | MIN                     | MAX   |  |
| А      | 1.350 | 1.750            | 0.053                   | 0.069 |  |
| A1     | 0.100 | 0.250            | 0.004                   | 0.010 |  |
| A2     | 1.350 | 1.550            | 0.053                   | 0.061 |  |
| b      | 0.330 | 0.510            | 0.013                   | 0.020 |  |
| с      | 0.170 | 0.250            | 0.006                   | 0.010 |  |
| D      | 4.700 | 5.100            | 0.185                   | 0.200 |  |
| E      | 3.800 | 4.000            | 0.150                   | 0.157 |  |
| E1     | 5.800 | 6.200            | 0.228                   | 0.244 |  |
| e      | 1.27  | 1.27 BSC         |                         | BSC   |  |
| L      | 0.400 | 1.270            | 0.016                   | 0.050 |  |
| e      | 0°    | 8°               | 0°                      | 8°    |  |
|        |       |                  |                         |       |  |



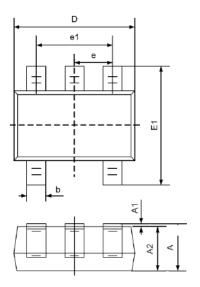

#### SOT23-5

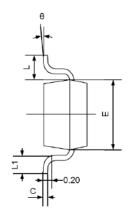



| Symbol |       | isions<br>imeters | Dimensions<br>In Inches |       |  |
|--------|-------|-------------------|-------------------------|-------|--|
| -,     | MIN   | MAX               | MIN                     | MAX   |  |
| A      | 1.050 | 1.250             | 0.041                   | 0.049 |  |
| A1     | 0.000 | 0.100             | 0.000                   | 0.004 |  |
| A2     | 1.050 | 1.150             | 0.041                   | 0.045 |  |
| b      | 0.300 | 0.500             | 0.012                   | 0.020 |  |
| с      | 0.100 | 0.200             | 0.004                   | 0.008 |  |
| D      | 2.820 | 3.020             | 0.111                   | 0.119 |  |
| E      | 1.500 | 1.700             | 0.059                   | 0.067 |  |
| E1     | 2.650 | 2.950             | 0.104                   | 0.116 |  |
| e      | 0.950 | BSC               | 0.037                   | BSC   |  |
| e1     | 1.900 | 1.900 BSC         |                         | BSC   |  |
| L      | 0.300 | 0.600             | 0.012                   | 0.024 |  |
| θ      | 0°    | 8°                | 0°                      | 8°    |  |
|        |       |                   |                         |       |  |



#### SOT23-6



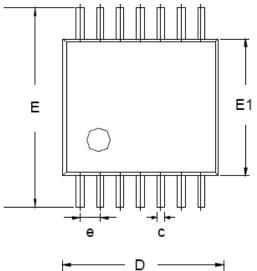

| Symbol |           | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-----------|------------------|-------------------------|-------|--|
|        | MIN       | MAX              | MIN                     | MAX   |  |
| A      | 1.050     | 1.250            | 0.041                   | 0.049 |  |
| A1     | 0.000     | 0.100            | 0.000                   | 0.004 |  |
| A2     | 1.050     | 1.150            | 0.041                   | 0.045 |  |
| b      | 0.300     | 0.500            | 0.012                   | 0.020 |  |
| с      | 0.100     | 0.200            | 0.004                   | 0.008 |  |
| D      | 2.820     | 3.020            | 0.111                   | 0.119 |  |
| E      | 1.500     | 1.700            | 0.059                   | 0.067 |  |
| E1     | 2.650     | 2.950            | 0.104                   | 0.116 |  |
| e      | 0.950     | BSC              | 0.037 BSC               |       |  |
| e1     | 1.900 BSC |                  | 0.075                   | BSC   |  |
| L      | 0.300     | 0.600            | 0.012                   | 0.024 |  |
| θ      | 0°        | 8°               | 0°                      | 8°    |  |

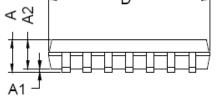


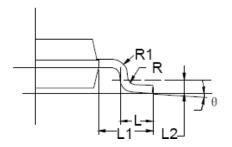
#### SC70-5






|        | Dimens   | sions    | Dimensions |       |  |
|--------|----------|----------|------------|-------|--|
| Symbol | In Milli | meters   | In Inch    | es    |  |
|        | Min      | Мах      | Min        | Max   |  |
| А      | 0.900    | 1.100    | 0.035      | 0.043 |  |
| A1     | 0.000    | 0.100    | 0.000      | 0.004 |  |
| A2     | 0.900    | 1.000    | 0.035      | 0.039 |  |
| b      | 0.150    | 0.350    | 0.006      | 0.014 |  |
| С      | 0.080    | 0.150    | 0.003      | 0.006 |  |
| D      | 2.000    | 2.200    | 0.079      | 0.087 |  |
| E      | 1.150    | 1.350    | 0.045      | 0.053 |  |
| E1     | 2.150    | 2.450    | 0.085      | 0.096 |  |
| e      | 0.650T   | YP       | 0.026T     | ΥP    |  |
| e1     | 1.200    | 1.400    | 0.047      | 0.055 |  |
| L      | 0.525R   | 0.525REF |            | EF    |  |
| L1     | 0.260    | 0.460    | 0.010      | 0.018 |  |
| θ      | 0°       | 8°       | 0°         | 8°    |  |

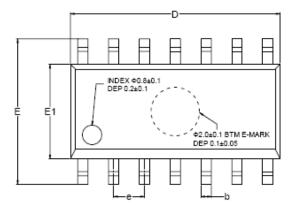


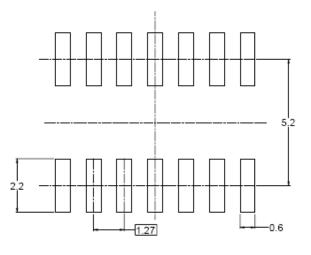


# ASOP8631/8632/8634

6MHZ CMOS Rail-to-Rail IO Opamps

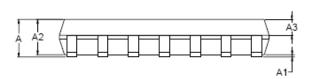
#### **TSSOP-14**

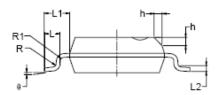





|          |      | Dimensions     |      |  |  |  |  |
|----------|------|----------------|------|--|--|--|--|
| Symbol   |      | In Millimeters |      |  |  |  |  |
| oyinibor | MIN  | ТҮР            | MAX  |  |  |  |  |
| А        | -    | -              | 1.20 |  |  |  |  |
| A1       | 0.05 | -              | 0.15 |  |  |  |  |
| A2       | 0.90 | 1.00           | 1.05 |  |  |  |  |
| b        | 0.20 | -              | 0.28 |  |  |  |  |
| с        | 0.10 | -              | 0.19 |  |  |  |  |
| D        | 4.86 | 4.96           | 5.06 |  |  |  |  |
| E        | 6.20 | 6.40           | 6.60 |  |  |  |  |
| E1       | 4.30 | 4.40           | 4.50 |  |  |  |  |
| е        |      | 0.65 BSC       |      |  |  |  |  |
| L        | 0.45 | 0.60           | 0.75 |  |  |  |  |
| L1       |      | 1.00 REF       |      |  |  |  |  |
| L2       |      | 0.25 BSC       |      |  |  |  |  |
| R        | 0.09 | -              | -    |  |  |  |  |
| θ        | 0°   | -              | 8°   |  |  |  |  |





#### SOP-14





RECOMMENDED LAND PATTERN (Unit: mm)





| Symbol | Dimensions In Millimeters |     |      | Dimensions In Inches |     |       |
|--------|---------------------------|-----|------|----------------------|-----|-------|
|        | MIN                       | MOD | MAX  | MIN                  | MOD | MAX   |
| A      | 1.35                      |     | 1.75 | 0.053                |     | 0.069 |
| A1     | 0.10                      |     | 0.25 | 0.004                |     | 0.010 |
| A2     | 1.25                      |     | 1.65 | 0.049                |     | 0.065 |
| A3     | 0.55                      |     | 0.75 | 0.022                |     | 0.030 |
| b      | 0.36                      |     | 0.49 | 0.014                |     | 0.019 |
| D      | 8.53                      |     | 8.73 | 0.336                |     | 0.344 |
| E      | 5.80                      |     | 6.20 | 0.228                |     | 0.244 |
| E1     | 3.80                      |     | 4.00 | 0.150                |     | 0.157 |
| e      | 1.27 BSC                  |     |      | 0.050 BSC            |     |       |
| L      | 0.45                      |     | 0.80 | 0.018                |     | 0.032 |
| L1     | 1.04 REF                  |     |      | 0.040 REF            |     |       |
| L2     | 0.25 BSC                  |     |      | 0.01 BSC             |     |       |
| R      | 0.07                      |     |      | 0.003                |     |       |
| R1     | 0.07                      |     |      | 0.003                |     |       |
| h      | 0.30                      |     | 0.50 | 0.012                |     | 0.020 |
| θ      | 0°                        |     | 8°   | 0°                   |     | 8°    |



#### IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights,

nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume .

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com