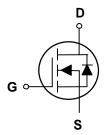


Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Application

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications



Product Summary

V _{DS}	40	V
R DS(on),Max@ VGS=10 V	1.5	mΩ
1 р	120	Α

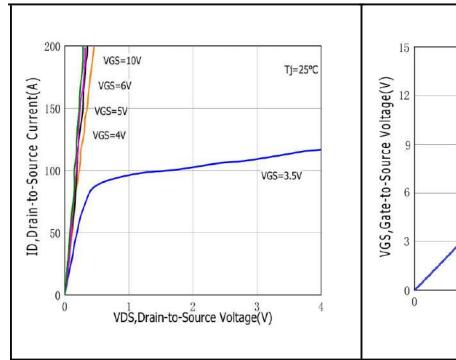
■ Absolute Maximum Ratings (T_A=25 °C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-source Voltage		V _{DS}	40	V	
Gate-source Voltage		V_{GS}	±20	V	
Drain Current (Silicon limited)		I _D	200	А	
Drain Current ^A	T _C =25℃		120	А	
	T _C =100℃	- I _D	82		
Pulsed Drain Current ^B		I _{DM}	360	А	
Avalanche energy ^c		Eas	450	mJ	
Total Power Dissipation ^D		P _D	114	W	
Thermal Resistance Junction-to-Case		R _{eJC}	1.1	- °C/ W	
Thermal Resistance Junction-to-Ambient ^E		$R_{ heta JA}$	20		
Junction and Storage Temperature Range		T _J ,T _{STG}	-55∼+150	$^{\circ}$	

■ Electrical Characteristics (T_J=25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Parameter			- 1	1		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D =250μA	40			٧
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V			1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} = ± 20 V, V_{DS} =0V			±100	nA
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D =250 μ A	2.2		3.8	V
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D =20A			1.5	mΩ
Gate Resistance	R _g	V _{GS} =0V,V _{DS} Open,f=1MHZ		2.7		Ω
Maximum Body-Diode Continuous Current	Is				120	Α
Dynamic Parameters						
Input Capacitance	C _{iss}			9300		
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V,f=300KHZ		1410		pF
Reverse Transfer Capacitance	C _{rss}			78		
Switching Parameters			-1	1		
Total Gate Charge	Qg			127		
Gate-Source Charge	Q_{gs}	V_{GS} =10V, V_{DS} =32V, I_{D} =20A		35		0
Gate-Drain Charge	Q_{gd}			26		nC
Reverse Recovery Chrage	Q _{rr}	L 05A 45/44 400A/v		163		
Reverse Recovery Time	t _{rr}	I _F =25A, di/dt=100A/us		100		
Turn-on Delay Time	t _{d(on)}			22.5		
Turn-on Rise Time	t _r	V _{GS} =10V,V _{DD} =20V,I _D =25A		6.7		ns
Turn-off Delay Time	t _{d(off)}	R_{GEN} =2 Ω		80.3		
Turn-off fall Time	t _f			26.9		

Note:


- A. The maximum current rating is package limited.
- B. Repetitive rating; pulse width limited by max. junction temperature.
- $\label{eq:DDD} \textbf{D.} \quad \textbf{P}_{\textbf{D}} \, \text{is based on max. junction temperature, using junction-case thermal resistance.}$
- E. The value of R_{BJA} is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with Ta=25 °C.

■ Typical Performance Characteristics

Figure.1 Typical Output Characteristics

Figure.2 Typical Gate Charge vs Gate to Source Voltage

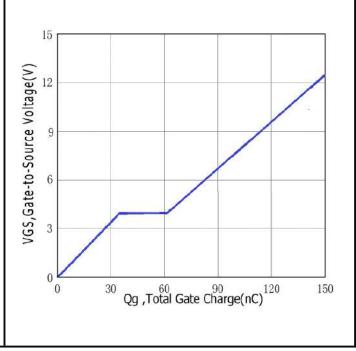
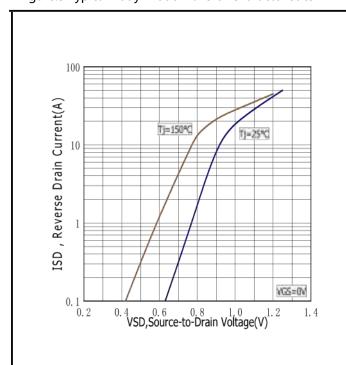
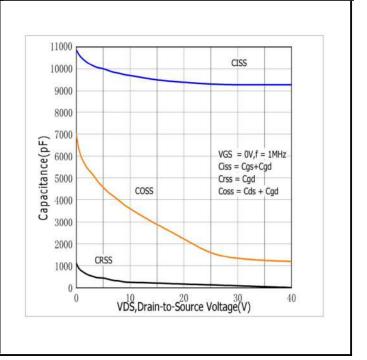
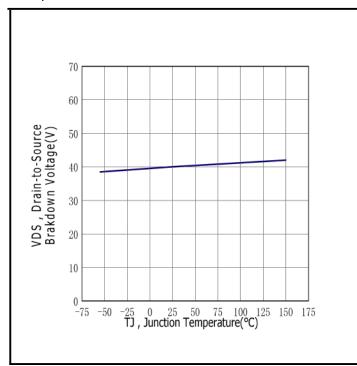




Figure.3 Typical Body Diode Transfer Characteristics

Figure.4 Typical Capacitance vs Drain to Source Voltage



■ Typical Performance Characteristics

Figure.5 Typical Breakdown Voltage vs Junction Temperature

Figure.6 Typical Drain to Source on Resistance vs Junction Temperature

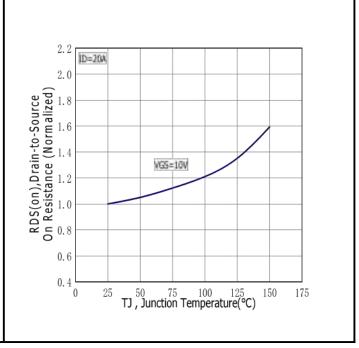
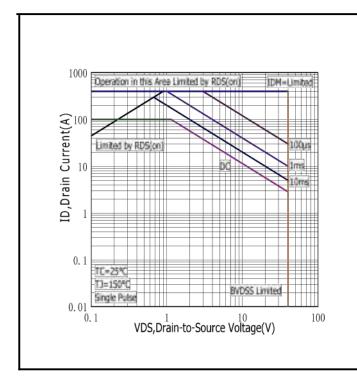
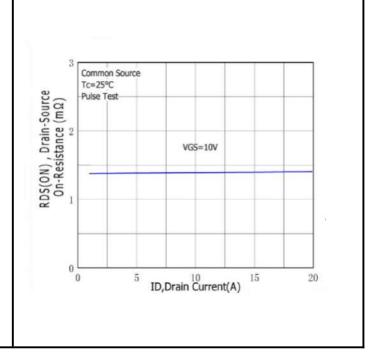
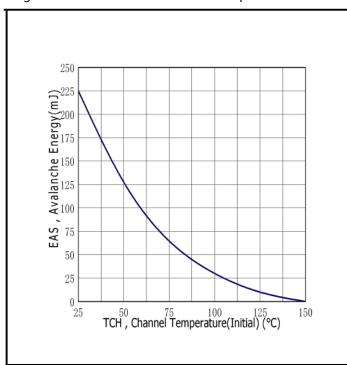




Figure.7 Maximum Forward Bias Safe Operating Area

Figure.8 Typical Drain to Source ON Resistance vs Drain Current



■ Typical Performance Characteristics

Figure.9 Maximum EAS vs Channel Temperature

Figure.10 Typical Threshold Voltage vs Case Temperature

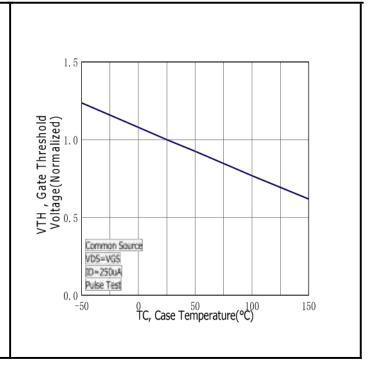
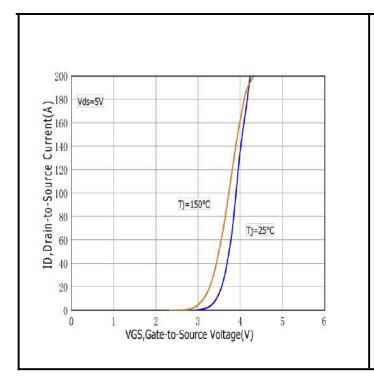



Figure.11 Typical Transfer Characteristics

Figure.12 Maximum Power Dissipation vs Case Temperature

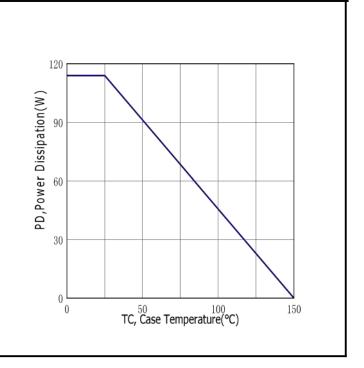
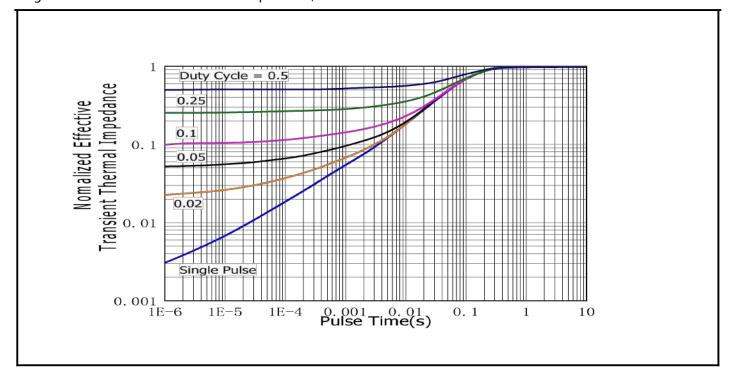



Figure.13 Maximum Effective Thermal Impedance, Junction to Case

■ Test circuits and waveforms

Figure A: Gate Charge Test Circuit & Waveforms

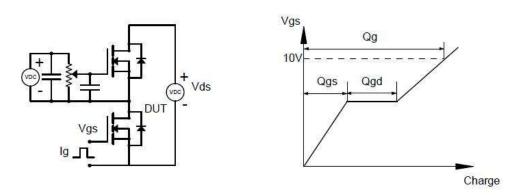


Figure B: Resistive Switching Test Circuit & Waveforms

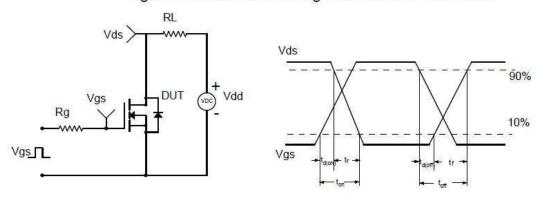


Figure C: Unclamped Inductive Switching (UIS) Test

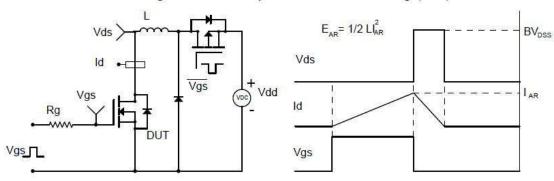
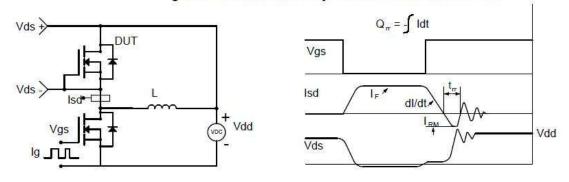
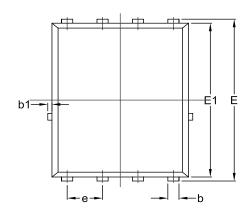
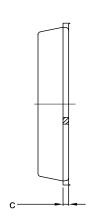
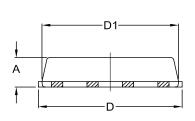
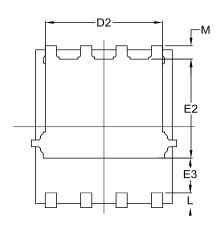



Figure D: Diode Recovery Test Circuit & Waveforms


Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
ASDM40R015NHQ-R	40R015NH	PDFN5*6-8	Tape&Reel	4000/Reel


PACKAGE	MARKING		
PDFN5*6-8	AS □□□ → Lot Number 40R015NH □□□□ → Date Code		


8/10

Notes:

1.Dimension D1 ,E1 not included mold flash

DIM	MILLIMETERS			
	MIN	NOM	MAX	
А	1.00	1.10	1.20	
b	0.30	0.40	0.50	
b1	0.02	0.15	0.22	
С	0.15	0.20	0.35	
D	4.95	5.25	5.45	
D1	4.80	4.90	5.00	
D2	4.00	4.20	4.40	
E	5.95	6.05	6.25	
E1	5.65	5.75	5.85	
E2	3.30	3.60	3.90	
E3	1.10	1	/	
е	1.27			
Ĺ	0.38	0.55	0.70	
M	0.35	0.50	0.65	

40V N-Channel MOSFET

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com