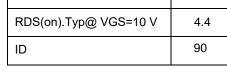
60

 $m\Omega$

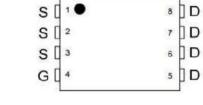
Α

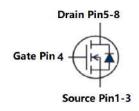


General Features

- Advanced Trench MOS Technology
- Low On-Resistance
- 100% avalanche tested
- Fast Switching Speed
- Excellent package for good heat dissipation

Application


- DC/DC Converters
- On board power for server
- Synchronous rectification



Product Summary

VDS

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	60	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Prain Compant 6	90	Α
I _D @T _C =100°C	Continuous Drain Current ^{1,6}	74	А
I _{DM}	Pulsed Drain Current ²	360	Α
EAS	Single Pulse Avalanche Energy ³	125	mJ
Is	Avalanche Current	90	А
P _D @T _C =25°C	Total Power Dissipation⁴	113	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter		Max.	Unit
D	Thermal Resistance Junction-ambient ¹(t≤10S)		26	°C/W
Reja	Thermal Resistance Junction-ambient ¹ (Steady State)		62	°C/W
Rejc	Thermal Resistance Junction-case ¹		1.1	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60			V	
D-2/2/3		V _{GS} =10V , I _D =20A		4.4	5.2	mΩ	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =10A		6.4	7.8	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, I_{D} =250uA	1.2	1.4	2.3	V	
lana	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	uA	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5		
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.3		Ω	
Qg	Total Gate Charge (10V)			33.4			
Qg	Total Gate Charge (4.5V)	V 20V V 10V I- 20A		17.8			
Q_{gs}	Gate-Source Charge	V _{DS} =30V , V _{GS} =10V , I _D =20A		5.8		nC	
Q _{gd}	Gate-Drain Charge			7.9			
$T_{d(on)}$	Turn-On Delay Time			7.5			
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_{G} =3.3 Ω ,		6			
$T_{d(off)}$	Turn-Off Delay Time	I _D =20A		29		ns	
T _f	Fall Time			7.5			
Ciss	Input Capacitance			1625			
Coss	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		438		pF	
Crss	Reverse Transfer Capacitance			25			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5,6}	V _G =V _D =0V , Force Current			116	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time	IF=20A , dI/dt=400A/μs ,		23		nS
Qrr	Reverse Recovery Charge	TJ=25°C		60		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH,I_{AS}=43A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.
- 6. The maximum current rating is package limited.

Test Circuit

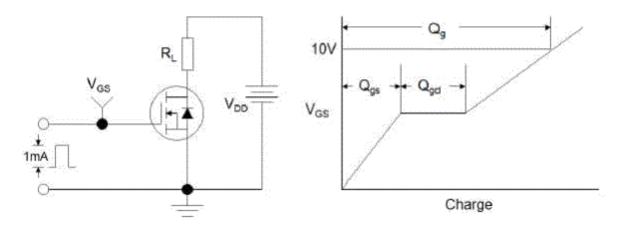


Figure1:Gate Charge Test Circuit & Waveform

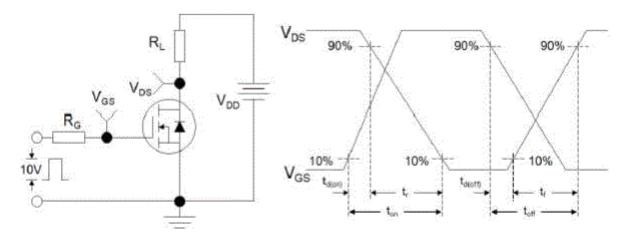


Figure 2: Resistive Switching Test Circuit & Waveforms

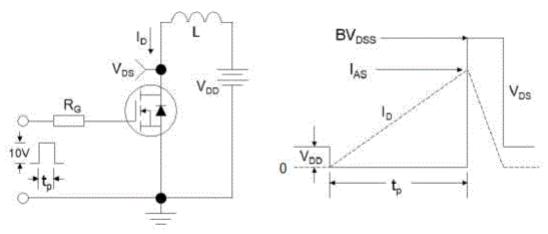
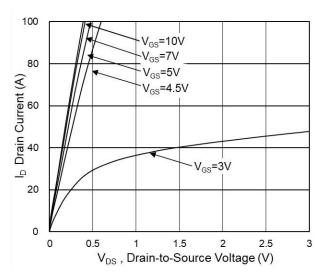



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms

Typical Characteristics

Fig.1 Typical Output Characteristics

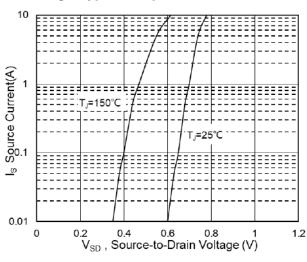


Fig.3 Source Drain Forward Characteristics

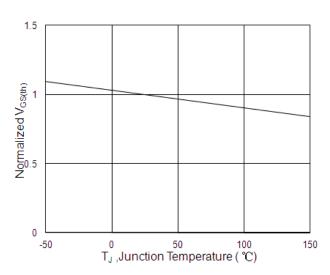


Fig.5 Normalized V_{GS(th)} vs T_J

4/8

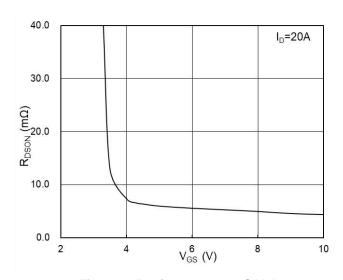


Fig.2 On-Resistance vs G-S Voltage

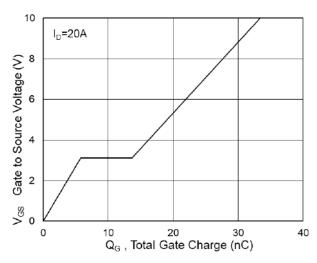


Fig.4 Gate-Charge Characteristics

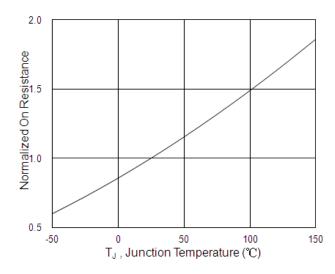
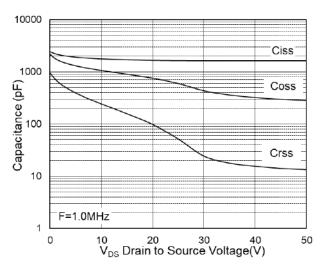



Fig.6 Normalized R_{DSON} vs T_J

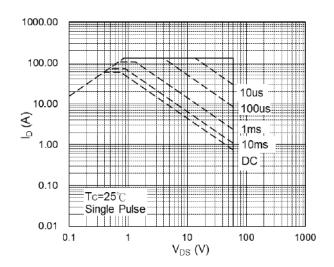


Fig.7 Capacitance

Fig.8 Safe Operating Area

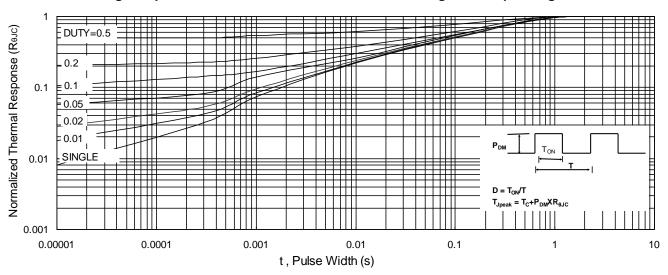


Fig.9 Normalized Maximum Transient Thermal Impedance

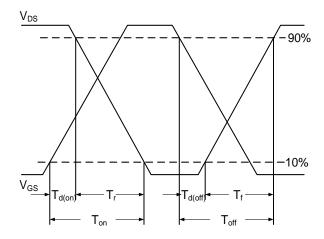


Fig.10 Switching Time Waveform

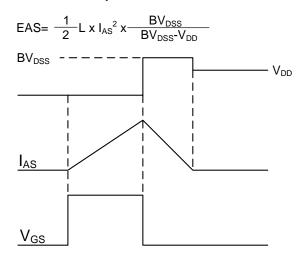
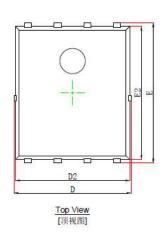
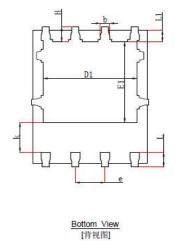
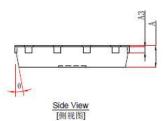


Fig.11 Unclamped Inductive Switching Waveform


Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
ASDM60R042NQ-R	60R042N	DFN5x6-8	Tape&Reel	4000/Reel


PACKAGE	MARKING
DFN5x6-8	AS □□□→ Lot Number 60R042N □□□□→ Date Code

Dimensions(DFN5×6-8)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	0.900	1.000	0.035	0.039
A3	0.254	REF.	0.010	REF.
D	4.944	5.096	0.195	0.201
E	5.974	6.126	0.235	0.241
D1	3.910	4.110	0.154	0.162
E1	3.375	3.575	0.133	0.141
D2	4.824	4.976	0.190	0.196
E2	5.674	5.826	0.223	0.229
k	1.190	1.390	0.047	0.055
b	0.350	0.450	0.014	0.018
е	1.270TYP.		0.050	TYP.
L	0.559	0.711	0.022	0.028
L1	0.424	0.576	0.017	0.023
Н	0.574	0.726	0.023	0.029
θ	10°	12°	10°	12°

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com