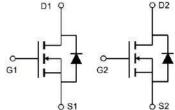


Features

- Trench Power LV MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

V DS	40	V
R DS(on),Typ@ VGS=10 V	17	mΩ
I D	20	Α


Application

- High current load applications
- Load switching
- Hard switched and high frequency circuits 100% ΔVds TESTED!
- Uninterruptible power supply

100% UIS TESTED!

ply

PDFN 3.3x3.3-8

NMOS

Absolute Maximum Ratings (T_A=25 °C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-source Voltage		V _{DS}	40	V
Gate-source Voltage		V_{GS}	±20	V
Drain Current	T _C =25℃		20	
Drain Current	T _C =100℃	l _D	16	- A
Pulsed Drain Current ^A		I _{DM}	80	А
Single Pulse Avalanche Energy ^B		E _{AS}	70	mJ
Total Power Dissipation	T _C =25℃	P _D	41	W
Thermal Resistance Junction-to-Ambient		R _{eJA}	35	°C/W
Thermal Resistance Junction-to-Case		R _{eJC}	3.0	°C/ W
Junction and Storage Temperature Range		$T_J,\!T_STG$	- 55∼+150	$^{\circ}$

Electrical Characteristics (T_J=25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Parameter			1	1	1	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D =250μA	40			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V			1	μА
Gate-Body Leakage Current	I _{GSS}	V_{GS} = $\pm 20V$, V_{DS} = $0V$			±100	nA
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D =250μA	1.0	1.8	2.5	V
Static Drain-Source On-Resistance	В	V _{GS} = 10V, I _D =20A		17	19	- mΩ
Static Diani-Source On-Resistance	R _{DS(ON)}	V _{GS} = 4.5V, I _D =10A		27	30	
Diode Forward Voltage	V _{SD}	I _S =20A,V _{GS} =0V		0.8	1.2	V
Dynamic Parameters	·					
Input Capacitance	C _{iss}			357		
Output Capacitance	C _{oss}	V_{DS} =20V, V_{GS} =0V, f =1MHZ		75		pF
Reverse Transfer Capacitance	C _{rss}			59		
Switching Parameters						
Total Gate Charge	Qg			20.5		
Gate-Source Charge	Q _{gs}	V _{GS} =10V,V _{DS} =20V,I _D =20A		2.5		
Gate-Drain Charge	Q_{gd}			4.5		nC
Reverse Recovery Charge	Q _{rr}	L = 200 A di/db=400 A /		0.4		
Reverse Recovery Time	t _{rr}	I _F =20A, di/dt=100A/us		7		
Turn-on Delay Time	t _{D(on)}			10		
Turn-on Rise Time	t _r	V =40V/V =20V L=2A D = 20		56		ns
Turn-off Delay Time	t _{D(off)}	V_{GS} =10V, V_{DD} =20V, I_{D} =2A, R_{GEN} =3 Ω		27		
Turn-off fall Time	t _f			72		

A. Pulse Test: Pulse Width≤300us,Duty cycle ≤2%.

B. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in 2 pad of 2oz copper.

Typical Performance Characteristics

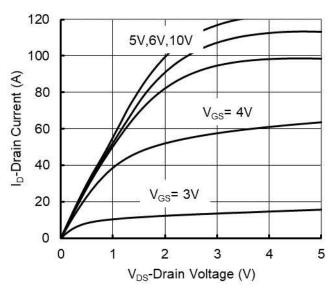


Figure 1. Output Characteristics

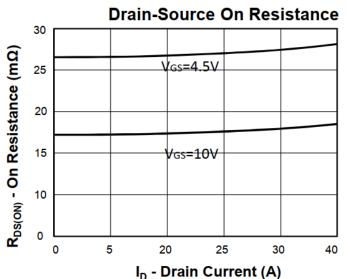
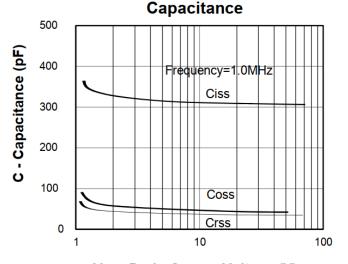



Figure 3. On-Resistance vs. Drain Current and Gate Voltage

V_{DS} - Drain-Source Voltage (V) Figure 5. Capacitance Characteristics

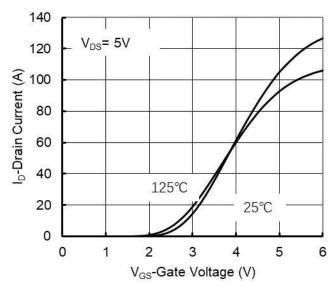


Figure 2. Transfer Characteristics

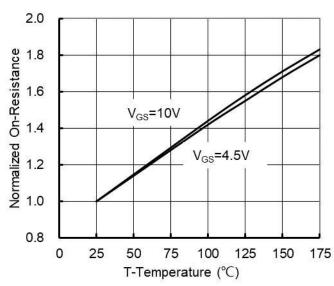
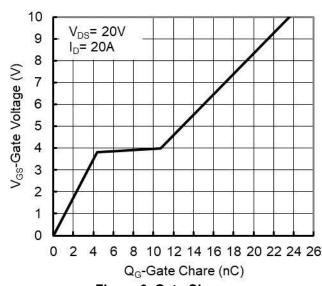



Figure 4. On-Resistance vs. Junction Temperature

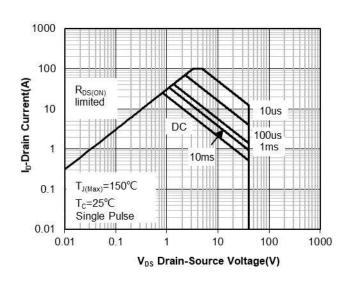


Figure 7. Safe Operation Area

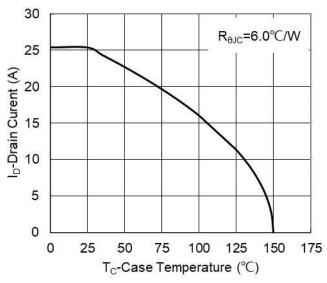
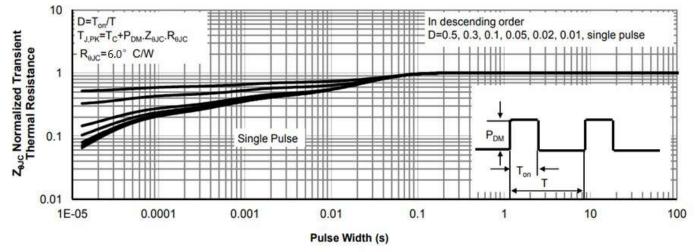
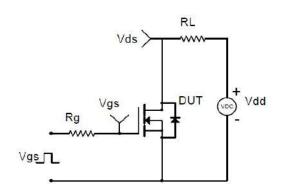
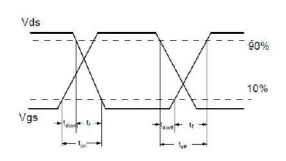
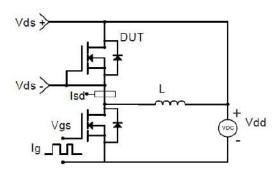
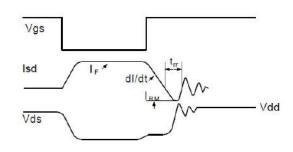
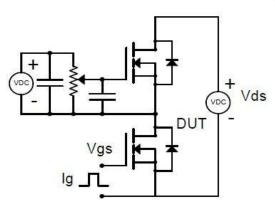
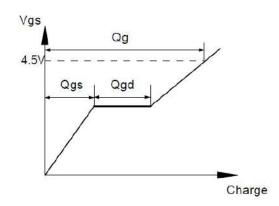


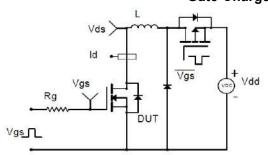
Figure 8. Maximum Continuous Drain Current vs Case Temperature

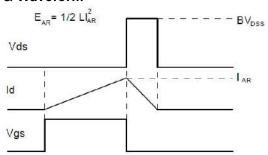






Figure 9. Normalized Maximum Transient Thermal Impedance



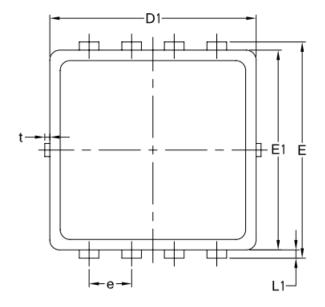

Resistive Switching Test Circuit & Waveforms

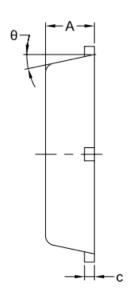


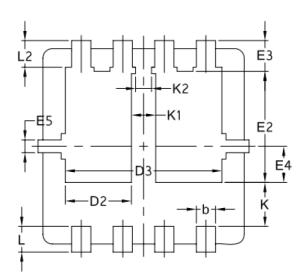

Diode Recovery Test Circuit & Waveforms

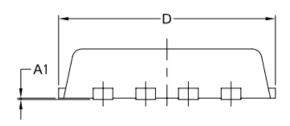
Gate Charge Test Circuit & Waveform

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms


Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
AST170D04D6L-R	T170D04	PDFN3.3*3.3-8	Tape&Reel	5000/Reel


PACKAGE	MARKING
PDFN3.3*3.3-8	T170D04 □□□□ Date Code



Dual PDFN3.3*3.3 Package Outline Data

S Y	COMMON		
M B O	MM		
2	MIN	NOM	MAX
Α	0.70	0.75	0.85
A1	/	/	0.05
b	0.25	0.30	0.39
С	0.14	0.152	0.20
D	3.20	3.30	3.45
D1	3.05	3.15	3.25
D2	0.84	1.04	1.24
D3	2.30	2.45	2.60
Е	3.20	3.30	3.40
E1	2.95	3.05	3.15
E2	1.60	1.74	1.90
E3	0.28	0.48	0.65
E4	0.37	0.57	0.77
E5	0.10	0.20	0.30
е	0.60	0.65	0.70
K	0.50	0.69	0.80
K1	0.30	0.38	0.53
K2	0.15	0.25	0.35
L	0.30	0.40	0.50
L1	0.06	0.125	0.20
L2	0.27	0.42	0.57
t	0	0.075	0.13
θ	10°	12°	14°

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.asdsemi.cn