

FeatureS

- · Easy to use, compatible with standard gate drivers
- Low Q_{rr}, no free-wheeling diode required
- Excellent Qg x RDS(on) product (FOM)
- Low switching loss
- RoHS compliant and Halogen-free

Application

- High efficiency power supplies
- High efficiency USB PD adapters
- Other consumer electronics

Maximum ratings, at T_c=25 °C, unless otherwise specified

Symbol	Parameter	Limit Value	Unit	
	Continuous drain current @T _c =25°C			А
Ι _D	Continuous drain current @T _c =100°C	6	А	
	Pulsed drain current @T _c =25°C (puls	e width: 10us)	31	А
I _{DM}	Pulsed drain current @T _c =150°C (pul	se width: 10us)	23	А
V _{DSS}	Drain to source voltage (T _J = -55°C to	650	V	
V _{TDSS}	Transient drain to source voltage ^a	800	V	
V _{GSS}	Gate to source voltage	±20	V	
P _D	Maximum power dissipation @T _c =25	38	W	
T _c		Case	-55 to 150	°C
TJ	Operating temperature	Junction	-55 to 150	°C
Τs	Storage temperature	-55 to 150	°C	
T _{CSOLD}	Soldering peak temperature	260	°C	

Thermal Resistance

Symbol	Parameter	Typical	Unit
Rojc	Junction-to-case	3.3	°C/W
R θja	Junction-to-ambient ^b	50	°C/W

Notes:

Off-state spike duty cycle < 0.01, spike duration < 2us a.

Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm b. copper area and 70µm thickness)

Sen 2022	Version1.0
3ep 2022	

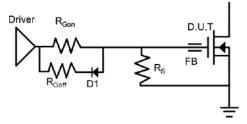
Product Summary	8	ROHS
Vos	650	V
RDS(on),Typ @ VGS =8V	230	mΩ
	9	А

*I*_D

650V N-Channel power MOSFET

Symbol	Min	Тур	Max	Unit	Test Conditions
Forward Chara	cteristics				
V _{DSS-MAX}	650	-	-	V	V _{GS} =0V
V _{GS(th)}	1.2	-	2.0	V	V _{DS} =V _{GS} , I _D =500μA
D C	190	230	312	mΩ	V _{GS} =8V, I _D =4A, T _J =25°C
R _{DS(on)} ^c	-	500	-		V _{GS} =8V, I _D =4A, T _J =150°C
I _{DSS}	-	8	20	μA	V _{DS} =700V, V _{GS} =0V, T _J =25°C
1055	-	50	-	μA	V _{DS} =700V, V _{GS} =0V, T _J =150°C
I _{GSS}	-	-	150	nA	V _{GS} =20V
.622	-	-	-150	nA	V _{GS} =-20V
C _{ISS}	-	500	-	pF	
C _{OSS}	-	18	-	pF	V _{GS} =0V, V _{DS} =650V, f=1MHz
C _{RSS}	-	2	-	pF	
C _{O(er)}	-	25	-	pF	
C _{O(tr)}	-	45	-	pF	- V _{GS} =0V, V _{DS} =0 - 650V
Q _G	-	21.5	-		
Q _{GS}	-	3	-	nC	V _{DS} =400V, V _{GS} =0 - 12V, I _D =5.5A
Q_{GD}	-	3.5	-		
t _{D(on)}	-	20	-		
t _R	-	7	-		
t _{D(off)}	-	80	-	ns	V_{DS} =400V, V_{GS} =0 - 12V, I_{D} =3A, R_{G} =30 Ω
t _F	-	6	-		
Reverse Chara	cteristics				·
	-	1.2	-		V _{GS} =0V, I _S =2A, T _J =25°C
V_{SD}	-	1.7	-	V	V _{GS} =0V, I _S =5A, T _J =25°C
	-	2	-		V _{GS} =0V, I _S =5A, T _J =150°C
t _{RR}	-	12	-	ns	
Q _{RR}	-	39	-	nC	I _S =3A, V _{GS} =0V, d _i /d _t =1000A/us, V _{DD} =400V

Electrical Parameters, at T_J=25 °C, unless otherwise specified


Notes:

c. Dynamic on-resistance; see Figure 17 and 18 for test circuit and configurations

Circuit Implementation

Mostly used in flyback, forward and push-pull converters

Recommended Single Ended Drive Circuit

Recommended gate drive: (0 V, 12 V) with R_{Gon} = 300 - 500 Ω , R_{Goff} =10 Ω

Gate	Gate	Gate	Gate Source	Gate
Ferrite Bead	Resistance	Resistance	Resistance	Diode
(FB)	(R _{Gon})	(R _{Goff})	(R _s)	(D1)
300 - 600 Ω@100 MHz	300 - 500 Ω	10 Ω	10 kΩ	1N4148

Typical Characteristics, at T_C=25 °C, unless otherwise specified

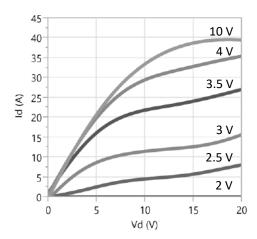


Figure 1. Typical Output Characteristics T_J=25°C

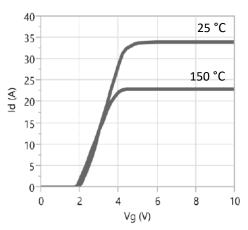
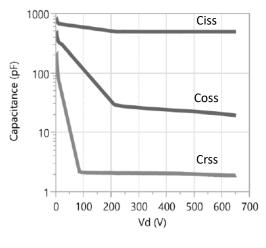
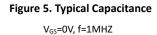




Figure 3. Typical Transfer Characteristics

V_{DS}=10V, Parameter: T_J

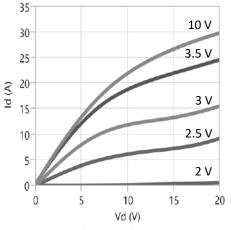


Figure 2. Typical Output Characteristics T_J=150°C

Parameter: V_{GS}

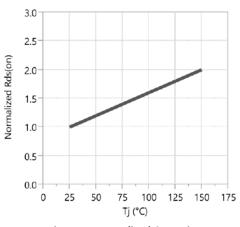
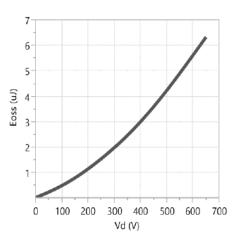



Figure 4. Normalized On-resistance

I_D=4A, V_{GS}=8V

Typical Characteristics, at T_c=25 °C, unless otherwise specified

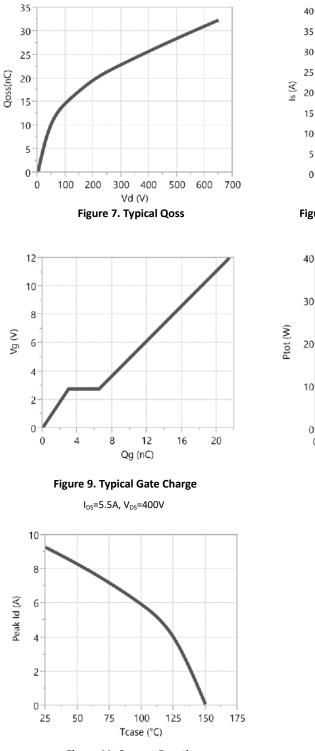
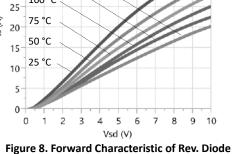
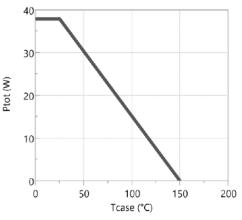



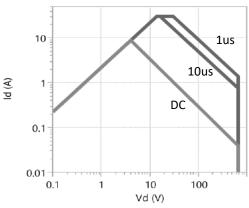
Figure 11. Current Derating



150 °C

125 °C

100 °C


Is=f(V_{sd}), Parameter T_J

Typical Characteristics, at $T_C=25$ °C, unless otherwise specified

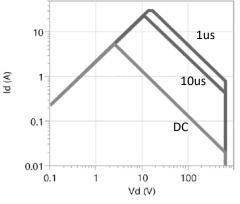


Figure 13. Safe Operating Area T_c=80°C

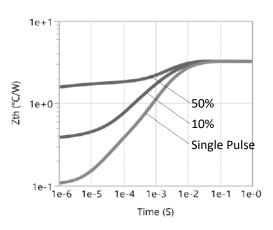


Figure 14. Transient Thermal Resistance

Test Circuits and Waveforms

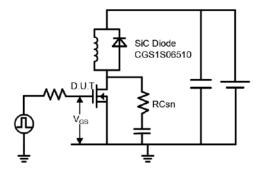


Figure 15. Switching Time Test Circuit

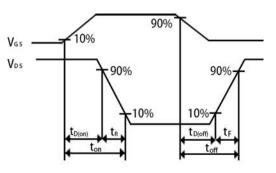


Figure 16. Switching Time Waveform

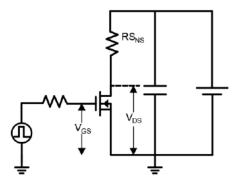


Figure 17. Dynamic R_{DS(on)} Test Circuit

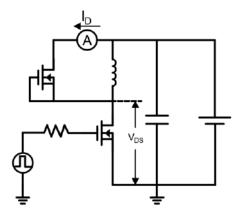


Figure 19. Diode Characteristic Test Circuits

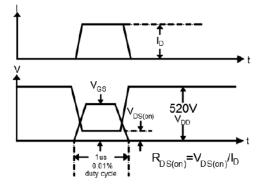


Figure 18. Dynamic R_{DS(on)} Waveform

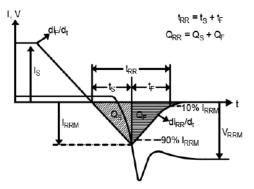
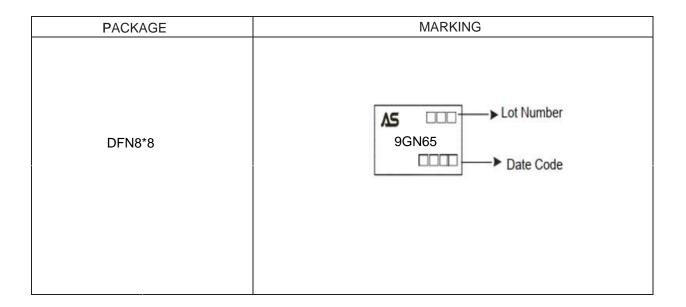


Figure 20. Diode Recovery Waveform

Design Considerations

Fast switching GaN device can reduce power conversion losses, and thus enable high frequency operations. Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.

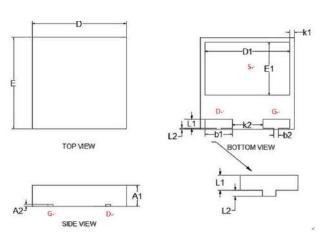
Before evaluating Runxin Micro's GaN devices, please refer to the table below which provides some practical rules that should be followed during the evaluation.


DO	DO NOT
Make sure the traces are as short as possible for both	Using Runxin Micro's devices in GDS board layouts
drive and power loops to minimize parasitic inductance	
Use the test tool with the shortest inductive loop, and	Use differential mode probe or probe ground clip with
make sure test points should be placed close enough	long wires
Minimize the lead length of DFN 8*8mm packages	Use long traces in drive circuit, or long lead length of
when installing them to PCB	the devices

When Evaluating Runxin Micro's GaN Devices:

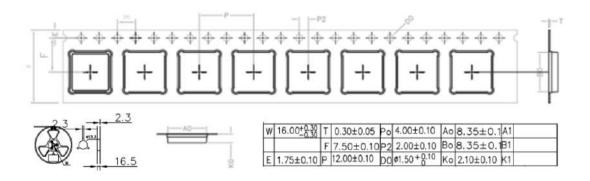
Ordering and Marking Information

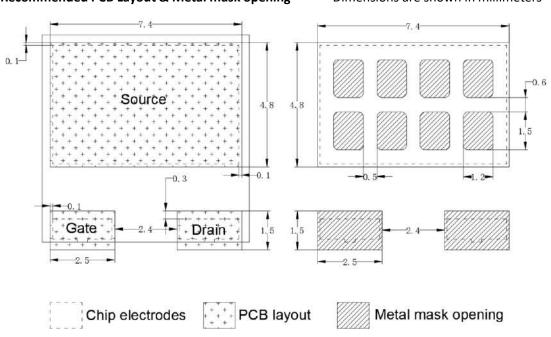
Ordering Device No.	Marking	Package	Packing	Quantity
ASDM9GN65TE-R	9GN65	DFN8*8	Tape&Reel	5000/Reel



ASDM9GN65TE 650V N-Channel power MOSFET

Package Outline


DFN 8 x 8mm (HS) Package


Sumbol	Dimensions in Millimeters					
Symbol	MIN	NOM	MAX			
A1	0.850	0.900	0.950			
A2	0.185	0.203	0.230			
D	7.000	8.000	9.000			
E	7.950	8.000	8.050			
D1	7.050	7.200	7.350			
E1	4.450	4.600	4.750			
K1	0.375	0.400	0.425			
K2	2.575	2.600	2.625			
b1	2.250	2.300	2.350			
b2	0.375	0.400	0.425			
L1	0.700	0.800	0.900			
L2	0.075	0.100	0.125			

Tape and Reel Information

Dimensions are shown in millimeters

Recommended PCB Layout & Metal mask opening

Dimensions are shown in millimeters

650V N-Channel power MOSFET

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any . Customer or user of this document or products described herein in such applications shall assume

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com