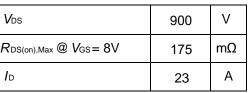

FeatureS

- Easy to use, compatible with standard gate drivers
- Superior reliability with BV_{DSS} over 1500V
- Low Q_{RR}, no free-wheeling diode required
- Excellent Q_G x R_{DS(on)} figure of merit (FOM)
- Low switching loss
- RoHS compliant and Halogen-free

Application

- High efficiency power supplies
- Telecom and datacom
- Servo motors
- Automotive

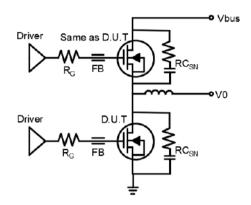

Maximum ratings, at T_C=25 °C, unless otherwise specified

Symbol	Parameter	Limit Value	Unit	
	Continuous drain current @T _C =25°C	23	Α	
I _D	Continuous drain current @T _C =100°C		15	А
	Pulsed drain current @T _C =25°C (pulse	width: 10us)	92	А
I _{DM}	Pulsed drain current @T _C =150°C (pulse	e width: 10us)	58	Α
V _{DSS}	Drain to source voltage (T _J = -55°C to 1	900	V	
V _{TDSS}	Transient drain to source voltage ^a	1000	V	
V _{GSS}	Gate to source voltage	±20	V	
P _D	Maximum power dissipation @ T _C =25°	100	W	
T _C		Case	-55 to 150	°C
T _J	Operating temperature	Junction	-55 to 150	°C
T _S	Storage temperature		-55 to 150	°C
T _{CSOLD}	Soldering peak temperature		260	°C

Thermal Resistance

Symbol	Parameter	Typical	Unit
Rөлс	Junction-to-case	1.25	°C/W
RөJA	Junction-to-ambient	50	°C/W

Product Summary


Electrical Parameters, at T_J=25 °C, unless otherwise specified

Symbol	Min	Typ	Max	Unit	Test Conditions
Forward Device Characteristics					
$V_{DSS\text{-MAX}}$	900	-	-	V	V _{GS} =0V
BV _{DSS}	-	1700	-	V	V _{GS} =0V, I _{DSS} =250μA
$V_{GS(th)}$	3.5	4	4.5	V	$V_{DS}=V_{GS}$, $I_D=500\mu A$
D b	-	-	175	mΩ	V _{GS} =8V, I _D =4A, T _J =25°C
R _{DS(on)} b	-	300	-	11132	V _{GS} =8V, I _D =4A, T _J =150°C
I _{DSS}	-	5	20	μΑ	V _{DS} =900V, V _{GS} =0V, T _J =25°C
אטי	-	50	-	μΑ	V _{DS} =900V, V _{GS} =0V, T _J =150°C
I _{GSS}	-	-	150	nA	V _{GS} =20V
1655	-	-	-150	nA	V _{GS} =-20V
C _{ISS}	-	606	-	pF	
C _{OSS}	-	40	-	pF	V _{GS} =0V, V _{DS} =900V, f=1MHz
C_{RSS}	-	3	-	pF	
C _{O(er)}	-	25	-	pF	V 0VV 0 to 000V
C _{O(tr)}	-	45	-	pF	V _{GS} =0V, V _{DS} =0 to 900V
Q_G	-	38	=		
Q_{GS}	-	8.4	-	nC	V_{DS} =600V, V_{GS} =0 to 12V, I_{D} =10A
Q_{GD}	-	4.7	-		
t _{D(on)}	-	44	-		
t _R	-	16	-]	V COOV V OVA- 13V L 10A B 40O
t _{D(off)}	-	40	-	ns	V_{DS} =600V, V_{GS} =0V to 12V, I_D =10A, R_G =40 Ω
$t_{\scriptscriptstyle{F}}$	-	12	-		
Reverse Device Characteristics					
	-	1.3	-		V _{GS} =0V, I _S =5A, T _J =25°C
V_{SD}	-	1.9	-	V	V _{GS} =0V, I _S =10A, T _J =25°C
	-	3	-	1	V _{GS} =0V, I _S =10A, T _J =150°C
t _{RR}	-	16	-	ns	
Q_{RR}	-	26	-	nC	I _S =10A, V _{GS} =0V, d _i /d _t =1000A/us, V _{DD} =600V

Notes:

- a. Off-state spike duty cycle < 0.01, spike duration < 2us
- b. Dynamic on-resistance; see Fig. 18 and 19 for test circuit and conditions

Circuit Implementation

Recommended Drive Circuit

Recommended gate drive: (0 V, 12 V) with $R_{G(tot)} = 41 \Omega$, where $R_{G(tot)} = R_G + R_{Driver}$

Gate Ferrite Bead	Gate Resistance1	RC Snubber	
(FB)	(R _G)	(RC _{SN})	
MPZ1608S471ATA00	40 Ω	69 pF + 15 Ω	

Notes:

- c. RCsn should be placed as close as possible to the drain pin
- d. The layout and wiring of the drive circuit should be as short as possible

Typical Characteristics, at T_C=25 °C, unless otherwise specified

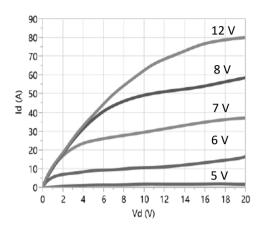
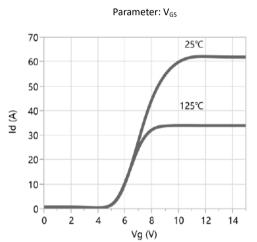



Figure 1. Typical Output Characteristics T_J =25°C

Figure 3. Typical Transfer Characteristics

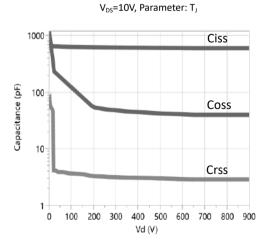


Figure 5. Typical Capacitance

V_{GS}=0V, f=1MHZ

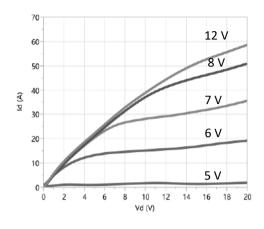


Figure 2. Typical Output Characteristics T_J=150°C

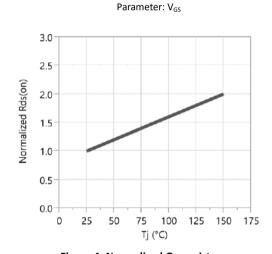
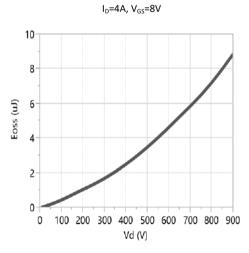



Figure 4. Normalized On-resistance

Figure 6. Typical Coss Stored Energy

Typical Characteristics, at T_C=25 °C, unless otherwise specified

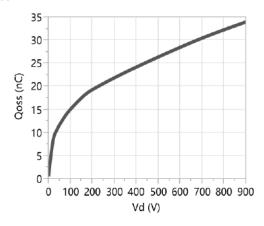


Figure 7. Typical Qoss

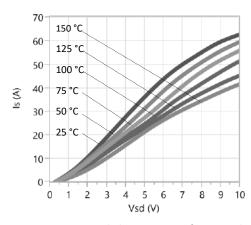


Figure 8. Forward Characteristic of Rev. Diode

Is=f(V_{Sd}), Parameter T_J

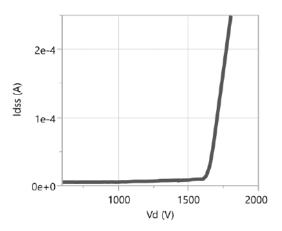


Figure 9. Drain-Source Breakdown Voltage

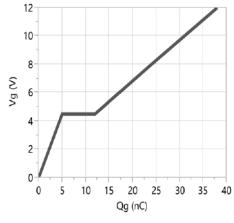


Figure 10. Typical Gate Charge

I_{DS}=10A, V_{DS}=600V

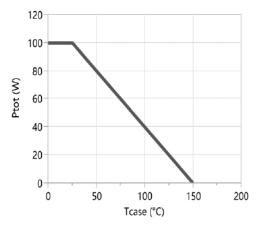


Figure 11. Power Dissipation

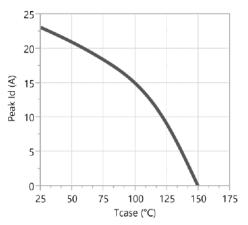


Figure 12. Current Derating

Typical Characteristics, at T_C=25 °C, unless otherwise specified

Figure 13. Safe operating Area T_c =25 °C

(calculated based on thermal limit)

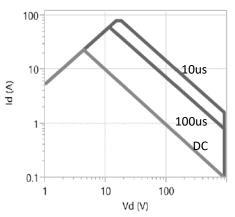


Figure 14. Safe operating Area T_c =80 °C

(calculated based on thermal limit)

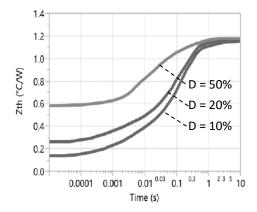


Figure 15. Transient Thermal Resistance

Test Circuits and Waveforms

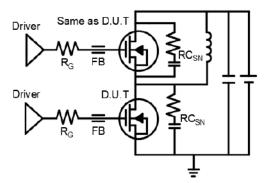


Figure 16. Switching Time Test Circuit

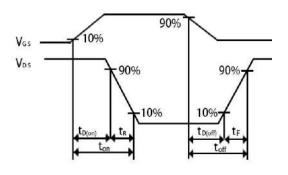


Figure 17. Switching Time Waveform

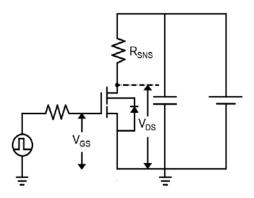


Figure 18. Dynamic $R_{DS(on)}$ Test Circuit

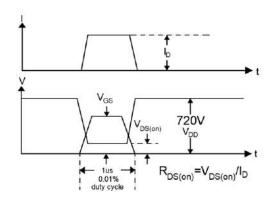


Figure 19. Dynamic $R_{DS(on)}$ Waveform

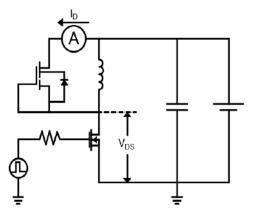


Figure 20. Diode Characteristic Test Circuit

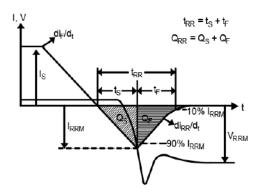


Figure 21. Diode Recovery Waveform

Design Considerations

Fast switching GaN device can reduce power conversion losses, and thus enable high frequency operations. Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.

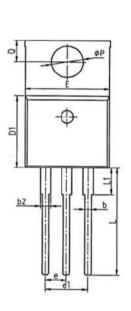
Before evaluating Ascend's GaN devices, please refer to the table below which provides some practical rules that should be followed during the evaluation.

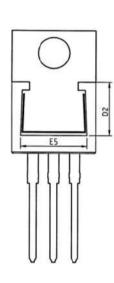
When Evaluating Ascend's GaN Devices:

DO	DO NOT	
Make sure the traces are as short as possible for both	Using Ascend's devices in GDS board layouts	
drive and power loops to minimize parasitic inductance		
Use the test tool with the shortest inductive loop, and	Use differential mode probe or probe ground clip with	
make sure test points should be placed close enough	long wires	
Minimize the lead length of TO packages when	Use long traces in drive circuit, or long lead length of	
installing them to PCB	the devices	

Ordering and Marking Information

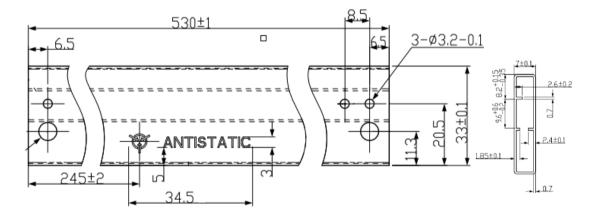
Ordering Device No.	Marking	Package	Packing	Quantity
ASDM23GN90P-T	23GN90	TO-220	Tube	50/Tube


PACKAGE	MARKING
TO-220	A5 □□□ ► Lot Number 23GN90 □□□ ► Date Code


Package Outlines

3 Lead TO-220 Package

Pin 1: Gate; Pin 2: Source; Pin 3: Drain; Tab: Source



COMMON DIMENSIONS				
Symbol	MM			
A	4.35	4.57	4.79	
A 1	1.10	1.27	1.50	
A2	2.40	2.69	2.95	
b	0.70	0.81	1.00	
b2	1.22	1.27	1.47	
С	0.30	0.38	0.48	
D 1	8.50	5.70	9.10	
D2	5.20	-	-	
Е	9.86	10.16	10.36	
e	2.54 BSC			
e1	5.08 BSC			
Hl	6.00	6.30	6.60	
L	12.50	13.40	14.50	
L1	-	3.75	4.10	
ФР	3.70	3.84	3.99	
Q	2.54	2.74	2.94	

Tube Information

Dimensions are shown in millimeters

ASDM23GN90P

900V N-Channel Power MOSFET

IMPORTANT NOTICE

Shenzhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS

DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Shenzhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Shenzhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Shenzhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on Shenzhen Ascend Semiconductor Incorporated website, harmless against all damages.

Shenzhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Shenzhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Shenzhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com

Sep 2021 Version1.0 11/11 Ascend Semicondutor Co.,Ltd