

- Perfect Solution for Car Charger
- Input voltage withstand up to 40V
- Built in $50m\Omega$ high side PMOS
- Built in $30m\Omega$ low side NMOS
- Support 3A continuous output current
- Support 100% duty cycle
- Output voltage and can be set $(2.5V\sim22V)$
- Constant current accuracy ±5%
- Constant voltage accuracy ± 1%
- No external compensation is required
- 135KHz fixed switching frequency
- Cable compensation voltage drop
- Short circuit protection (SCP), overheating protection (OTP), over voltage protection (OVP) and under voltage protection (UVLO)
- Available Packages: ESOP-8

Application

- Car Chargers
- Adapters
- Intellingent Sockets
- Drive Recorders

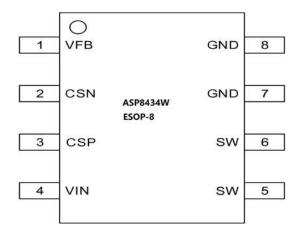
Ordering Information

Device No.	Package	Quantity
ASP8434W-R	ESOP-8	4000pcs/Reel

Note: "W" stands for package. "W": ESOP-8. Note: "R" stands for Packing, Tape&Reel.

Description

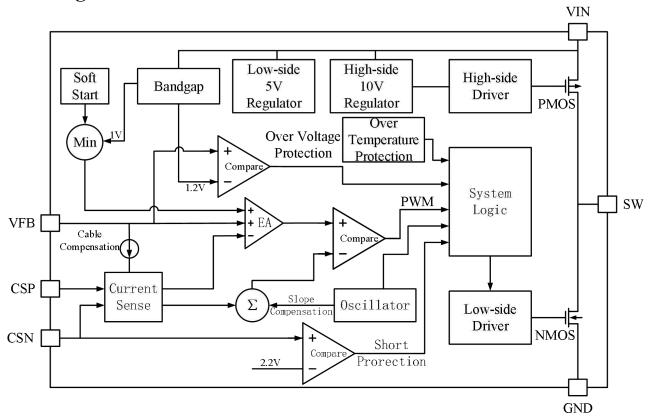
ASP8434W is a step-down DC-DC converter with input withstand voltage up to 40V and can realize accurate constant voltage and constant current. ASP8434W has built-in $50m\Omega$ high side PMOS and $30m\Omega$ low side NMOS, which can support 3A continuous output current, adjustable output voltage and 100% duty cycle at most.


ASP8434W has high-performance load response and input voltage response. At the same time, the accurate constant voltage and constant current control loop realizes minimal load adjustment rate and linear adjustment rate.

ASP8434W does not need external compensation. It can realize constant current and constant voltage control by relying on its own built-in stable loop. At the same time, it has the function of cable voltage drop compensation.

ASP8434W is a stable and reliable constant voltage constant current step-down DC-DC converter with excellent performance.

Marking Description



Pin Configuration

PIN	NAME	DISCRIPTION
1	VFB	Output voltage feedback
2	CSN	Negative current detection
3	CSP	Positive current detection
4	VIN	Power input pin and connect a 100uF / 50V electrolytic capacitor and a 1uF / 50V chip capacitor to the ground These two capacitors should be as close to the VIN pin as possible
5,6	SW	Switch
7,8	GND	Ground

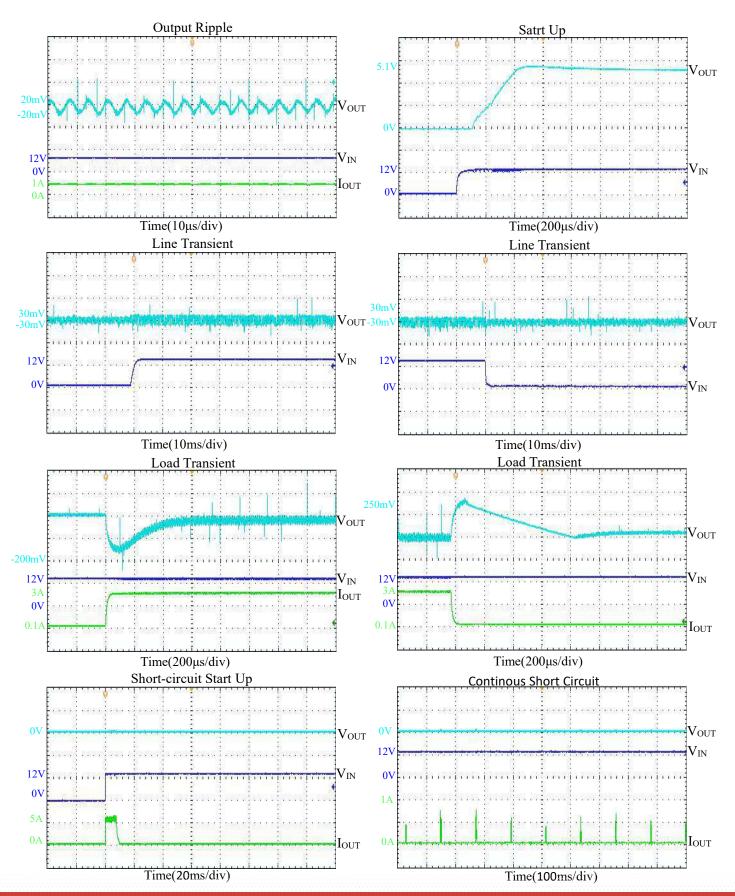
Block Diagram

Absolute Maximum Ratings

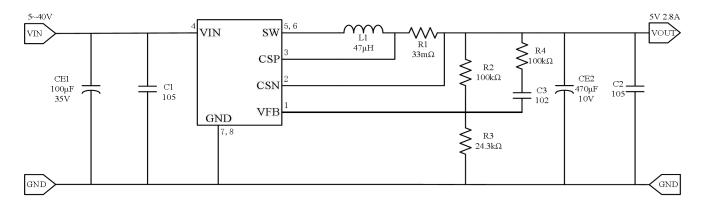
Item	Description	Min	Max	Unit
	VIN ~ GND	-0.3 40		V
Voltage	SW ~ GND	-0.3 40		V
	FB ~ GND	-0.3	6	V
	SCP ~ GND	-0.3	20	V
	SCN ~ GND	-0.3	20	V
Tr	Operating Temperature Range	-40	150	°C
Temperature	Storage Temperature	-55	150	°C
Thermal Resistance (Junction to Ambient)	SOP8	180 °C/		°C/W
Power Dissipation	SOP8	550		mW
Electrostatic discharge rating	Human Body Model (HBM)	3		kV
	Charged Device Model (CDM)	200		V

Note: exceeding the range specified by the rated parameters will cause damage to the chip, and the working state of the chip beyond the range of rated parameters cannot be guaranteed. Exposure outside the rated parameter range will affect the reliability of the chip.

Electrical Characteristics


(At $T_A=25$ °C, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IN}	Input Voltage		5		40	V
V _{UVLO}	UVLO Voltage				5	V
V _{HYS}	UVLO Hysteresis		0.3	0.5	0.8	V
I_Q	Quiescent current	V _{FB} =1.5V,Forced Shutdown		1500		μΑ
I_{SB}	Standby Current	No Load		1.5	2	mA
$V_{ ext{FB}}$	Reference voltage of V _{FB}		0.99	1	1.01	V
OVP	Output Overvoltage protection voltage		1.27	1.30	1.35	V
F_{SW}	Switching Frequency	I _{OUT} =200mA	120	135	150	kHz
D_{MAX}	Maximum Duty Cycle			100		%
Ton	Minimum On-Time			350		ns
V _{CSP} - V _{CSN}	Reference voltage of CSP	2.5V <v<sub>OUT <5V</v<sub>	89	93	97	mV
V_{Cab}	Cable Compensation $R_{FB2}(\frac{V_{CSP}}{32K}-1\mu A)$	V _{CSP} - V _{CSN} <93mV			0.6	V
R _{DSON_H}	High-Side Switch	TI _250C	45	50	60	mΩ
R _{DSON_L}	Low-Side Switch	TJ =25°C	25	30	37	mΩ
V _{OUT} -V _{SHORT}	Output Short Circuit Voltage Threshold		2	2.2	2.5	V
T _{SHDN}	Thermal Shutdown Temperature	Shutdown, temperature increasing		140		°C
		Reset,temperature decreasing		110		°C


$40\mbox{V}$, $3\mbox{A}$, CC and CV Synchronous Buck DC/DC Converter Typical Performance Characteristics

Test Condition: T_A=25°Cunless otherwise noted

Typical Application

Note: if the cable compensation voltage is above 0.6V, add this typical circuit to the VFB pin of ASP8434W chip (as shown in the figure, the cable compensation voltage of the parameter is about 0.8V), the output voltage is 5V, the output current is 2.1A-2.4A, the inductance is 47μ H, the output voltage is 5V, the output current is $1.5A\sim1.0A$, and the inductance is 68μ H.

Functional descriptions

UVLO

ASP8434W V_{IN} withstand voltage can reach 40V and can work in the range of 5 ~ 40V.

System soft start

When ASP8434W is just powered on or restarted after short-circuit protection, the internal constant voltage and constant current reference sources will slowly rise to the preset value from 0 through 300µs, so as to avoid excessive impulse current on the system just started.

Constant current output

Set the output voltage of the system through the voltage dividing resistor at V_{FB} end.

$$Vout = 1V * \frac{R2 + R3}{R1}$$

Output overvoltage protection

When it is detected that the voltage on the V_{FB} reaches 1.3V, ASP8434W stops output to avoid damage to the back-end electrical equipment under abnormal application conditions.

Constant current output

ASP8434W detects the output current by sampling the voltage difference between isen and vsen, and adjusts the output current to a preset value by closing the loop.

The output current can be set through the current detection resistance rsen:

$$Iout = \frac{93mV}{R_{SEN}}$$

The constant current output is effective when the output voltage is greater than 2.5V. When the output voltage is lower than 2.5V due to heavy load, ASP8434W will enter the short-circuit protection mode.

Short circuit protection

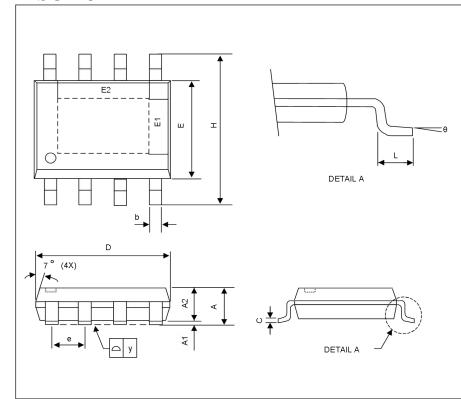
When the output voltage V_{OUT} drops below 2.5V due to heavy load, ASP8434W enters the short-circuit protection mode. In the short-circuit protection mode, the operating frequency of ASP8434W is reduced to 1/3 of the normal frequency. If Vout remains above 2.5V for 4ms, ASP8434W will stop output and restart after 32ms.

Cable voltage compensation

When users use different cables, different voltage drops will be generated on the cables. You can select the corresponding product model according to different cable compensation requirements:

ASP8434W:

$$V_{OUT} = \left[\left(\frac{R_{FB2}}{R_{FB3}} + 1 \right) * V_{FB} \right] + \left[R_{FB2} * \left(\frac{V_{CSP}}{32K} - 1uA \right) \right]$$


Overheat protection

When the ASP8434W detects that the internal temperature of the chip reaches 140 degrees, the output stops, and when the temperature drops below 110 degrees, the output resumes again.

Package Outline

ESOP-8

REF	Millimeter		
KLI	Min	Max	
A		1.75	
A1	0.10	0.25	
A2	1.25		
С	0.10	0.25	
D	4.70	5.10	
Е	3.70	4.10	
. Н	5.80	6.20	
L	0.40	1.27	
b	0.31	0.51	
e	1.27 BSC		
у		0.10	
θ	0	8°	
E1	2.20 BSC		
E2	3.30 BSC		

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights,

nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume .

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com